TECHNISCHES MERKBLATT

GRILAMID TR 55 NATUR

Allgemeine Produktbeschreibung

Grilamid TR 55 natur ist ein hochtransparentes, thermoplastisches Polyamid auf der Basis aliphatischer und cycloaliphatischer Bausteine.

Grilamid TR 55 natur zeichnet sich durch folgende besondere Eigenschaften aus:

- § herausragende Transparenz
- § unbegrenzte Einfärbbarkeit
- § ausgezeichnete Spannungsrissbeständigkeit
- § Zähigkeit und Steifigkeit
- § gute Chemikalienbeständigkeit
- § EU und FDA Lebensmittelzulassung

Grilamid TR 55 natur eignet sich insbesondere für transparente Spritzgussanwendung in folgenden Segmenten:

- Optik
- Automobil
- Maschinenbau
- Sicherheitstechnik
- Elektro / Elektronik
- Sanitär
- Haushalt
- Sport & Freizeit

EIGENSCHAFTEN

Mechanische Eigenschaften

		Norm	Einheit	Zustand	Grilamid TR 55
Zug-E-Modul	1 mm/min	ISO 527	MPa	kond.	2200
Streckspannung	50 mm/min	ISO 527	MPa	kond.	75
Streckdehnung	50 mm/min	ISO 527	%	kond.	Ş
Bruchspannung	50 mm/min	ISO 527	MPa	kond.	٠
Bruchdehnung	50 mm/min	ISO 527	%	kond.	> 50
Schlagzähigkeit	Charpy, 23°C	ISO 179/2-1eU	kJ/m²	kond.	ohne Bruch
Schlagzähigkeit	Charpy, -30°C	ISO 179/2-1eU	kJ/m²	kond.	ohne Bruch
Kerbschlagzähigkeit	Charpy, 23°C	ISO 179/2-1eA	kJ/m²	kond.	3
Kerbschlagzähigkeit	Charpy, -30°C	ISO 179/2-1eA	kJ/m²	kond.	7
Shore Härte D		ISO 868	-	kond.	85
Kugeldruckhärte		ISO 2039-1	MPa	kond.	120
*nicht relevant gemäss ISO 10350-1					
Thermische Eigenschaften					
Glasübergangstemperatur	DSC	ISO 11357	°C	trocken	160
Formbeständigkeit HDT/A	1.80 MPa	ISO 75	°C	trocken	130
Formbeständigkeit HDT/B	0.45 MPa	ISO 75	°C	trocken	145
Therm. Längenausdehnung längs	23-55°C	ISO 11359	10 ⁻⁴ /K	trocken	3.0
Therm. Längenausdehnung quer	23-55°C	ISO 11359	10 ⁻⁴ /K	trocken	3.0
Maximale Gebrauchstemperatur	dauernd	ISO 2578	°C	trocken	80 - 100
Maximale Gebrauchstemperatur	kurzzeitig	ISO 2578	°C	trocken	120
Elektrische Eigenschaften					
Durchschlagfestigkeit		IEC 60243-1	kV/mm	kond.	31
Vergleichende Kriechwegbildung	CTI	IEC 60112	-	kond.	600
Spez. Durchgangswiderstand		IEC 60093	$\Omega \cdot m$	kond.	10 ¹
Spez. Oberflächenwiderstand		IEC 60093	Ω	kond.	10 ¹
Allgemeine Eigenschaften					
Dichte		ISO 1183	g/cm³	trocken	1.06
Brennbarkeit (UL94)	0.8 mm	ISO 1210	Stufe	-	HE
Wasseraufnahme	23°C/gesätt.	ISO 62	%	-	3.5
Feuchtigkeitsaufnahme	23°C/50% r.F.	ISO 62	%	-	1.5
Linearer Spritzschwund	längs	ISO 294	%	trocken	0.60
Linearer Spritzscriwund					0.70

Verarbeitungshinweise für die Spritzgiessverarbeitung von GRILAMID TR 55 natur

Das vorliegende technische Merkblatt für Grilamid TR 55 natur gibt Ihnen nützliche Hinweise für die Materialvorbereitung, die Maschinenanforderungen, den Werkzeugbau sowie die Verarbeitung.

MATERIAL VORBEREITUNG

Grilamid TR 55 natur wird verarbeitungsfertig getrocknet geliefert. Die Säcke sind luftdicht verschweisst. Eine Vortrocknung ist daher nicht erforderlich.

Lagerung

Amorphe Polyamide sind mehrere Jahre lagerfähig ohne Einfluss auf die mechanischen Eigenschaften der Endprodukte. Wenn für Grilamid TR Produkte optimale Farbe oder Transparenz gefordert werden, soll die Lagerzeit 6 Monate nicht übersteigen und die Lagertemperatur so tief wie möglich gehalten werden. Oberhalb 25°C wird eine Oxidation im Granulat mit zunehmender Temperatur und Lagerungsdauer beschleunigt und wird erst nach thermischer und mechanischer Belastung im Verarbeitungsprozess als Verfärbung erkennbar.

Als Lagerort empfiehlt sich ein trockener Raum, in dem die Säcke auch vor Beschädigung geschützt sind.

Handhabung und Sicherheit

Detaillierte Informationen können aus dem "Material Sicherheits Datenblatt" (MSDS) entnommen werden, welches mit der Materialbestellung angefordert werden kann.

Trocknung

Grilamid TR 55 natur wird bei der Herstellung auf einen Wassergehalt von unter 0.08 % getrocknet und luftdicht verpackt. Sollte die Verpackung beschädigt oder das Material zu lange offen gelagert worden sein, so muss das Granulat getrocknet werden. Ein zu hoher Wassergehalt kann sich durch einen beim Ausspritzen ins Freie schäumenden Schmelzekuchen und durch Silberschlieren am Spritzgussteil äussern.

Die Trocknung kann erfolgen im:

Trockenlufttrockner

Temperatur: max. 80°C
Zeit: 4 - 12 Stunden
Taupunkt der Trockenluft: < -30°C

Vakuumofen

Temperatur: max. 100°C Zeit: 4 - 10 Stunden

Umlufttrockner sind für Grilamid TR nicht geeignet. Zur Überprüfung/Überwachung des effektiven Feuchtegehalt empfiehlt sich die Verwendung von einem Feuchtemessgerät (z.B. Aboni oder Aquatrac).

Trockenzeit

Bei nur wenig schäumendem Schmelzekuchen und leichten Silberschlieren am Spritzgussteil kann die minimale Trockenzeit genügen. Bei über Tage offen gelagertem Material mit stark schäumendem Schmelzekuchen, ungewöhnlich dünnflüssiger Schmelze, starken Schlieren und rauher Oberfläche am Spritzgussteil ist die maximale Trockenzeit nötig.

Silberschlieren am Teil können auch durch Überhitzung der Schmelze (über 320°C) oder durch zu lange Verweilzeit der Schmelze im Zylinder verursacht werden.

Trocknungstemperatur

Einen Hinweis auf eine oxidative Schädigung von Polyamiden gibt eine bei hellen Farben sichtbare Vergilbung. Im Trockenlufttrockner sollte die maximale Temperatur (80°C) nicht überschritten werden. Im Vakuumofen, bei geringerem Sauerstoffpartialdruck, ist eine höhere Temperatur (100°C) möglich. Um eine Vergilbung bei hellen Farben zu erkennen, ist es sinnvoll, eine kleine Granulatmenge als Vergleichsmuster zurückzuhalten.

Zur Sicherstellung einer problemlosen Verarbeitung empfehlen wir das Material immer über einen Trockenluftrockner zu verarbeiten.

Wiederverwertung vom Regenerat

Grilamid TR 55 natur ermöglicht als thermoplastischer Kunststoff eine Aufbereitung fehlerhafter Teile und Angussverteiler zu Mahlgut. Eine anteilige Rückführung des Regenerat in den Spritzgiessprozess ist möglich wobei folgende Punkte zu berücksichtigen sind:

- keine thermische Schädigung bei der vorangegangenen Verarbeitung
- keine Verschmutzung durch Fremdmaterial, Staub, Öl usw.
- § Regenerat muss trocken und staubfrei sein

Bei der Zuführung von Regenerat muss der Verarbeiter besondere Sorgfalt walten lassen. Für hochwertige technische Teile sollte nur Neuware verwendet werden.

MASCHINENANFORDERUNGEN

Grilamid TR 55 natur lässt sich auf allen für Polyamid geeigneten Spritzgiessmaschinen verarbeiten.

Schnecke

Verschleissgeschützte Universalschnecken mit Rückstromsperre sind zu empfehlen (3 Zonen).

Länge:	18 - 25 D
Kompressionsverhältnis:	2 - 2.5

Schussvolumen

Der Dosierweg muss in jedem Fall (ohne Dekompressionsweg) länger sein als die Länge der Rückstromsperre.

Schussvolumen = 0.5 - 0.9 x max. Dosiervolumen der Spritzeinheit

Heizung

Mindestens drei separat regelbare Heizzonen sollten Zylindertemperaturen von bis zu 350°C erzeugen können. Eine separate Düsenheizung ist notwendig. Der Zylinderflansch muss temperierbar sein (Stockkühlung).

Düse

Offene Düsen mit exakter Temperierung sind zu bevorzugen. Es besteht jedoch die Gefahr, dass beim nötigen Schneckenrückzug nach dem Dosieren (Dekompression) Luft mit eingezogen wird. Werden Verschlussdüsen verwendet, so ist die Friktionserwärmung und der Druckverlust so gering wie möglich zu halten. Axiale Schiebeverschlussdüsen sind ungeeignet.

Zuhaltekraft

Die Maschinenzuhaltekraft kann nach folgender Faustformel abgeschätzt werden:

Zuhaltekraft

7.5 kN" x projizierte Fläche (cm²)

1) Forminnendruck 750 bar

WERKZEUGBAU

Für die Auslegung der Werkzeuge gelten die für transparente Thermoplaste üblichen Richtlinien. Für die formbildenden Bereiche genügen übliche verschleissfeste Werkzeugstähle (durchhärtende Stähle, Einsatzstähle etc.), welche auf ca. 56 HRC gehärtet werden sollten.

Entlüftung

Grilamid TR 55 natur sind Entlüftungen am Fließwegende oder an Stellen im Werkzeug, wo Schmelzeströme zusammenfließen, wichtig. Entlüftungen ausserhalb der Trennebene sind über zusätzliche freigeschliffene Ausstosser vorzusehen (0.02 mm).

Anguss / Anschnitt

Ein zentraler Stangenanguss im Bereich der grössten Wanddicke ist der sicherste Weg zu guter Formfüllung und zur Vermeidung von Einfallstellen. Punktanschnitt (direkt) oder Tunnelanguss sind aber wirtschaftlicher und auch bei technischen Teilen üblich.

Um ein zu frühes Einfrieren zu vermeiden und um die Formfüllung nicht zu erschweren, gilt:

Anschnittdurchmesser

0.8 x grösste Wanddicke des Spritzgiessteils

Angussdurchmesser

1.4 x grösste Wanddicke des Spritzgiessteils (jedoch mindestens 4 mm)

VERARBEITUNG

Grundeinstellungen

Als Grundeinstellung für die Verarbeitung von Grilamid TR 55 natur hat sich folgendes Prozessbedingungen bewährt.

Temperaturen

Flansch	40-60°C
Zone 1	250-270°C
Zone 2	260-280°C
Zone 3	270-290°C
Düse	280-300°C
Werkzeug	80-110°C
Masse	280-305°C
Masse	280-305°C

Nachdruck / Dosierung

Nachdruck (spez.) 400 - 600 bar Staudruck (spez.) 50 - 150 bar Schneckenumfangsgeschw. 0.05 - 0.3 m/s

Die Einspritzgeschwindigkeit sollte gegen Ende des Füllvorgangs reduziert werden, um Materialverbrennungen zu vermeiden. Für das Dosieren sollte die Restkühlzeit maximal ausgenutzt werden.

Entformungshilfe

Bei Entformungsproblemen empfehlen wir zusätzlich die Verwendung des Entformungsmasterbatches Grilamid MB 6960 LS natur (Zugabe = 2-4%). Das Masterbatch verbessert die Entformung von Teilen mit kompliziertem Design, Hinterschnitten, langen Entformungswegen und heissen Kernen.

Farbkorrektur

Zur Kompensation der materialinhärenten Eigenfarbe empfehlen wir das Masterbatch Grilamid MB TR 55 blau 4545 (Zugabe = 2-4%) für technische Anwendungen.

Bei Anwendungen mit direktem Lebensmittelkontakt muss das Masterbatch Grilamid MB TR 55 violett 4516 verwendet werden (Zugabe = 2-4%).

Bei den empfohlenen Zugabemengen werden die mechanischen Eigenschaften und die Transparenz durch die Masterbatches nicht beeinflusst.

KUNDENDIENSTLEISTUNGEN

EMS-GRIVORY ist Spezialist in der Polyamidsynthese und Polyamidverarbeitung. Unsere Dienstleistungen umfassen nicht nur die Herstellung und Lieferung von technischen Thermoplasten, wir bieten vielmehr auch eine vollständige technische Unterstützung an:

- § Rheologische Formteilauslegung / FEM
- § Prototypenwerkzeuge
- § Materialauswahl
- § Verarbeitungsunterstützung
- § Formteil- und Werkzeugdesign

Wir beraten Sie gerne. Nehmen Sie einfach Kontakt mit unseren Verkaufsbüros auf.

Die vorliegenden Daten und Empfehlungen entsprechen dem heutigen Stand unserer Erkenntnisse, eine Haftung in Bezug auf Anwendung und Verarbeitung kann jedoch nicht übernommen werden.

Erstellt: LHT / 04.2001 Aktualisiert: PAM / 03.2012

Diese Version ersetzt die vorherigen produktspezifischen Merkblätter.

www.emsgrivory.com